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We present a method for generating a biochemical reaction network from a description of the in-

teractions of components of biomolecules. The interactions are specified in the form of reaction

rules, each of which defines a class of reaction associated with a type of interaction. Reactants

within a class have shared properties, which are specified in the rule defining the class. A rule

also provides a rate law, which governs each reaction in a class, and a template for transforming

reactants into products. A set of reaction rules can be applied to a seed set of chemical species and,

subsequently, any new species that are found as products of reactions to generate a list of reactions

and a list of the chemical species that participate in these reactions, i.e., a reaction network, which

can be translated into a mathematical model.
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INTRODUCTION

The cell is a complex adaptive system whose emergent behavior we understand only poorly. One

reason for our lack of understanding is the complexity of cellular decision making, which is of-

ten mediated by a system of interacting proteins. Systems of interacting proteins are particularly

prominent in signal transduction1 [1], the focus of our interest here. Such a system is complex

in part because the interactions of its constituent proteins generally have the potential to gener-

ate a large number of distinct chemical species [2, 3], which can be far greater than the number

of proteins or protein interactions in the system. Moreover, these chemical species are generally

interconnected through a network of even more numerous reactions. Two major sources of this

complexity, which has been called combinatorial complexity for reasons that will become appar-

ent, are catalytic interactions of proteins that lead to post-translational covalent modifications, such

as enzyme-catalyzed phosphorylation of an amino acid residue in a protein substrate, and non-

covalent associative interactions of proteins that lead to the formation of heterogeneous molecular

complexes. Both types of interactions are common in the regulatory systems of a cell [1, 4, 5].

The magnitude of combinatorial complexity can be grasped through the following consider-

ations. A protein that can be covalently modified at p sites (e.g., through phosphorylation of

particular amino acid residues within particular protein motifs) can occupy up to 2p modification

states, and a protein that interacts with q binding partners (e.g., through the activities of protein

interaction domains [5]) can occupy up to 2q bound states. Binding- or modification-induced tran-

sitions between different conformational states add a further layer of complexity at the level of

individual molecules. All of this complexity is multiplied for complexes. For an assembly of n
proteins, the number of distinct possible configurations is on the order of �ni=1si, where si is the

number of possible states of protein i in the assembly. Thus, the number of chemical species in a

system depends exponentially on the number of interactions in the system and may be quite large

even when few interactions are involved. For example, a model of early signaling events mediated

1The physiological function of a signal-transduction network is to convert an environmental signal, such as the

presence of an extracellular ligand of a cell-surface receptor, into cellular responses, such as changes in gene expres-

sion, which allow a cell to adapt to the demands of its environment.
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by the immune recognition receptor Fc�RI includes 354 chemical species and 3680 unidirectional

reactions, but these species and reactions arise from consideration of the interactions among only

three signaling proteins—the multimeric receptor, Fc�RI, and two protein tyrosine kinases (PTKs),

Lyn and Syk—and a ligand [6, 7].

The problem of combinatorial complexity has been largely ignored, but it is difficult to avoid

if one wishes to model a signal-transduction network at the level of protein interactions, which

is the level of detail accessed in experiments (e.g., one may introduce a mutation that blocks a

particular protein-protein interaction) and the level of detail desired for mechanistic modeling [8].

Interactions between proteins are mediated by submolecular components, such as protein motifs or

protein interaction domains, and most signaling proteins contain more than one such component.

Thus, to track protein-protein interactions, one generally needs to account for multivalent interac-

tions (for an example of one approach to this problem, see [9]). Further complexity arises from

the dependence of protein interactions on molecular context, which often influences the enzymatic

and binding activities of proteins. For example, the rate of an enzymatic reaction may depend

on the co-localization of an enzyme and its substrate, and the binding of two interacting proteins

may depend on the phosphorylation state of one or both of these proteins. Thus, in the absence of

information about which species are important and unimportant, a mechanistic model of a signal-

transduction network would ideally account for all the possible states of molecules that may have

multiple states and all the possible multi-component complexes of molecules in a system.

Modeling a system marked by combinatorial complexity is problematic simply because of the

large numbers of chemical species and reactions one may wish to include in a model. Models

cannot be written by hand. Manually writing a mass-balance equation for each of the chemical

species in a large reaction network would be far too time consuming and error prone. This barrier

to modeling signal transduction, and other biological networks, has been recognized by a number

of researchers (for example, see [3, 8, 10, 11, 12, 13]), and there have been some attempts to

overcome it. One example is STOCHSIM [14, 15, 16], a software tool for agent-based modeling

of signal transduction. This tool addresses the problem of combinatorial complexity by treating
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molecules as interacting software objects. Molecules that may have multiple states are handled;

however, the ability to handle complexes is limited.

To deal with the problem of combinatorial complexity, we have developed a modeling approach

that relies on the specification of reaction rules, which serve as generators of chemical reactions.

The rules that comprise the specification of a model are associated with the possible interactions

and transformations of the domains of molecules in a system. An example of such a domain is

the Src homology 2 (SH2) domain, which is one of many conserved modular polypeptide chains

that mediate protein-protein interactions [5]. A rule has essentially the same form as a chemical

reaction (e.g., A+B k! C), but the rule provides a template that defines many different individual

reactions, which form a reaction class. Within a reaction class, reactants undergo a common type

of transformation and all reactants share certain properties, which are specified in the governing

reaction rule. Only chemical species with these properties qualify as reactants. Any properties that

are unspecified in the rule are assumed not to affect the mechanism or rate of a reaction, which is a

simplification, but one that can be tested and refined as necessary for consistency with experimental

observations. A set of reaction rules can be evaluated automatically (as we will describe here in

detail) to derive a reaction network, which can then be converted into a mathematical model, such

as a system of coupled ordinary differential equations (ODEs). However, the reaction network

is the crux of the matter; once a network is available, it can be used as the basis for many types

of mathematical models. The network is comprehensive for the scope of interactions considered,

which is precisely defined by the reaction rules used to generate the network. The validity and

usefulness of this approach relies largely on the modularity of protein domains. One must be able

to associate interactions and transformations of these domains with classes of reactions in which

only certain properties of reactants influence the rate of reaction.

The first implementation of our rule-based approach to modeling was ad hoc, being useful only

for generating a particular model, the model mentioned above for Fc�RI signaling [6, 7]. Later, we

generalized the implementation and developed general-purpose software called BioNetGen [17].

This software can be used to generate models for a variety of signal-transduction networks. How-
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ever, the software in original form has a number of limitations. Reaction rules can be evaluated

only after all possible chemical species are enumerated, which is a limitation when it is either un-

desirable or impossible to consider all these species (e.g., as when the number of possible species

exceeds that number of molecules available to populate the species). Also, a reaction network

must be generated in its entirety before it can be used to predict the dynamics of the network. An-

other limitation concerns the number of multi-state molecules in a complex: only two multi-state

molecules may combine to form a complex within the limitations of the original representational

and rule-processing capabilities of the software. Here, we present algorithmic improvements that

remove these limitations. An updated version of BioNetGen (version 1.1) is available at our web

site [18]. We also suggest here extensions of the methodology that will be needed if graphs are

used to specify models as recently proposed [19]. The proposed graph-based conventions for model

specification, which were inspired by the use of graphs to model chemical systems [20, 21], are

intended to allow the connectivity of multi-component complexes to be represented systematically

and explicitly.

1 OVERVIEW OF METHOD

The method for generating a model of any system, as presented here, consists of two distinct pro-

cedures: 1) specification of the model and 2) interpretation of this specification. Figure 1 illustrates

specification of a system consisting of a ligand, a receptor, an adapter, and a kinase. Definitions

of key terms that we will use in our discussion of rule-based modeling are provided in Fig. 2. The

conventions of model specification provide a compact format for archiving and exchanging models

[17, 19], i.e., an unambiguous language for encoding knowledge of a biological system, which is

needed [22, 23]. The interpretation of a model specification depends on software that implements

the procedures described later. The main result of interpreting a model specification is a chemical

reaction network, which can be translated into a mathematical or computational model.

In broad outline, a model is specified as follows. One first identifies the molecules, components
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of molecules, and possible states of components to be considered. Then, one specifies a reaction

rule for each type of reaction to be considered. These specifications are sufficient to define the

structure of a reaction network, but additional steps would be necessary to create a predictive

mathematical model. One might wish to specify the forms of rate laws in reaction rules (e.g.,

elementary or Michaelis-Menten rate laws), the values of kinetic parameters, and the numbers

of molecules of each type in a system. To translate the specification of a model into a reaction

network, one begins by specifying a seed set of chemical species. After this step, the reaction

rules are applied automatically and iteratively, starting with the seed set of chemical species. In

this procedure, chemical species that qualify as reactants are identified, and then reactions and

their products are generated. The products may include new chemical species. The procedure

continues until a termination condition is satisfied. The default condition is exhaustive generation

of all possible species and reactions given a set of rules and a set of initial species. These steps

generate a list of reactions and a list of the participating chemical species, which can be used to

obtain different types of models that predict system behavior.

2 REPRESENTING A SYSTEM

We have proposed two sets of conventions for specifying rule-based models. The first is algebraic,

abstract, and text-based [17], whereas the second is visual, intuitive, and graph-based [19]. Below,

we will describe the text-based conventions and methodology in detail. One disadvantage of the

text-based approach is that the connectivity of a complex is not represented and must be handled

on a case-by-case basis by the user. Furthermore, not all complexes can be represented in this way,

and there are thus some models that cannot be constructed. Graphical conventions for specifying

a model [19] are more powerful, as they represent a generalization of the text-based conventions,

but also more difficult to implement. Although we expect the graphical conventions to eventually

supercede the text-based ones, the issues that arise in implementing both sets of conventions are

similar, and therefore, an extended discussion of the techiques we have applied is useful at this



J. R. FAEDER et al. 7

time.

2.1 The Molecular Parts, Their States and Complexes

Chemical species are represented using text strings. A simple name (e.g., A) may be used to

represent any particular individual chemical species. A species represented this way is called

a single-state species. A molecule string (Fig. 2), which comprises a name and an ordered list

of indices, may be used to represent a particular species or set of related species containing a

particular molecule. The molecule may have multiple components, and each component may have

multiple states2. There is an index for each component, and this index indicates the state of the

component or a range of possible states. A species represented by a molecule string is called

a multi-state species. A list of molecule strings may be used to represent complexes containing

particular molecules. The conventions of representation are elaborated below.

The indices of a molecule string form an ordered list, each element of which has a fixed po-

sition. If the indices of a molecule string are all integers, then the string represents a particular

chemical species that contains a molecule, which is indicated by the name of the molecule string.

Each index is associated with a component of this molecule. The possible states of each compo-

nent are associated with integer values, which range, by convention, from 0, for the first state, ton � 1, for the nth and final state. Molecular components and their states can be associated with

descriptive names in comment lines of an input file, but these names are optional and they are not

used in the process of network generation. All possible states of a component can be referenced by

a wildcard character, *. If the wildcard is included among the indices, then a molecule string repre-

sents a set of chemical species. A list of period-separated molecule strings that have integer-valued

indices, such as R(1; 1):R(1; 1), specifies a particular multi-component complex containing a set

2Component states can be introduced to represent different conformations or modified forms of a molecular compo-

nent. For example, the enzymatic activity of a kinase domain might be upregulated by phosphorylation of its activation

loop, which causes a conformational change. To distinguish the inactive and active forms of such a kinase, we need

to track its conformational state, or equivalently the phosphorylation state of its activation loop. An alternative to

introducing a phosphorylation state would be to represent a phosphate group as a distinct component. If this approach

is followed, it is important to distinguish between covalent and non-covalent bonds when specifying a model.
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of molecules (two molecules of R in the example). If a molecule string in such a list includes a

wildcard, which references multiple states, then the list represents a set of complexes. Note that the

connectivity of components within a complex is not explicitly represented, which is a limitation of

the current representational scheme.

BioNetGen requires all single- and multi-state species used in reaction rules to be declared in an

input file. A single-state species declaration introduces the alphanumeric name (e.g., A) to be used

for a particular single-state species. A multi-state species declaration introduces a set of molecule

strings, all with the same alphanumeric name. The declaration consists of this name, followed by

a list of integer numbers. The length of this list specifies the number of indices to be considered

for each molecule string (i.e., the number of components of a molecule), and the value of each

integer in the list specifies the number of values to be allowed for the index at the same position in

the list of indices of each molecule string (i.e., the number of possible states for a component). An

example of a multi-state species declaration is R 2 4, which introduces a molecule string R with

two indices, i.e., a molecule with two components. The first component has two possible states,

which are taken to be 0 and 1 by convention, and the second component has four possible states (0,

1, 2, and 3). Thus, the molecule strings (and corresponding multi-state species) that are introduced

by the declaration R 2 4 are R(0; 0), R(0; 1); : : : ; R(1; 3). If an undeclared multi-state species is

generated during the process of network generation, an error message is reported.

A multi-component complex of molecules can be represented in one of two ways, both of

which involve the use of at least one molecule string. In the first way, the representation of a

complex is subsumed into the state description of a molecular component, which is typically a site

of protein-protein interaction. For example, given two binding partners, A and B, we can use a

multi-state species declaration, namely A 2, to introduce A(0) and A(1), which we can then take

to represent the free form of A and the complex of A and B (or equivalently, the form of A with

its first and only component in the bound state). The free form of B can be represented simply

as B. The implicit representation of a physical complex using a molecule string, such as A(1),
requires that a user associate the complex with the state of a molecular component and specify
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self-consistent reaction rules. The burden is on the user to devise an appropriate mapping between

states and complexes, which can be cumbersome.

The second way a complex can be represented is as a period-separated list of molecule strings,

such as A(1; 0):B(1) or A(1; 1):B(1):C(1; 0; 0). A list may contain any number of molecule

strings. The order of these strings is unimportant for purposes of model specification. Thus,

specifications of A(1; 0):B(1) and B(1):A(1; 0), for example, in an input file are equivalent. Dec-

larations of complexes, like declarations of single- and multi-state species, may be included in an

input file. These declarations, if used, define the complexes that are allowed in a system. The

use of such declarations is discussed further in Sec. 3.4. An example of a complex declaration isR(1; �):R(1; �), which introduces homodimeric complexes of R in which the first component of

each molecule of R is in state 1 and the second component may be in any of its possible states,

which are delimited by the multi-state species declaration of R. If this declaration is R 2 2, then

the declaration R(1; �):R(1; �) introduces three dimers: R(1; 0):R(1; 0), R(1; 1):R(1; 0), which is

equivalent to R(1; 0):R(1; 1) (see below), and R(1; 1):R(1:1).
In summary, there are three ways to refer to chemical species or sets of chemical species in a

system. A user may use a simple name, a molecule string, or a list of molecule strings. Molecule

strings may contain wildcards, which allow a user to refer to a set of species. A species is a member

of a set, such as R(1; �), if it is represented by a matching molecule string, such as R(1; 0) orR(1; 1). To define the species allowed in a system, a user may declare single-state species (e.g.,B), multi-state species (e.g., R 2 4 and A 2), and complexes (lists of multi-state molecule strings),

such as R(1; �):R(1; �).
BioNetGen arranges molecule strings within a complex according to a predetermined sort or-

der, which ensures that each complex is associated with a unique text string. Molecules within a

complex are first sorted alphabetically by name (e.g., A(1) before B(1)). Any molecule strings

with the same name, such as R(0; 0) and R(0; 1), are then sorted according to the states of their

components, which as discussed earlier, have a fixed order and are represented by integer-valued

indices. For example, the first and second indices in R(1; 2) always correspond to the first and
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second components of R. The states of components are compared from right to left. Thus, in a

comparison of R(0; 0) and R(0; 1), we examine 0 and 1. Higher values take precedence over lower

values. Thus, R(0; 0):R(0; 1) is rewritten as R(0; 1):R(0; 0). Another example of a canonical

listing of molecule strings is R(1; 1):R(0; 1):R(1; 0):R(0; 0). The canonical ordering of molecule

strings facilitates comparisons of species and reactions. These comparisons are necessary to main-

tain unique lists of species and reactions in a network.

2.2 Reaction Rules for Molecular Interactions and Transformations

A reaction rule is defined for each class of reaction to be considered in a system. In cases we have

considered, classes are associated with an interaction between two components, such as binding

of a particular protein interaction domain to a binding site (e.g., the SH2 domain of one protein

binding the phosphorylated tyrosine residue of a second protein). A reaction rule has the same

form as a chemical reaction, e.g., A +B k! C for an elementary bimolecular associative reaction

with rate constant k. However, in a reaction rule, the reactants and products may be replaced by

group patterns. A group pattern defines a set of chemical species that share a set of component

states and bonds, which are specified in the group pattern. Group patterns in BioNetGen are regular

expressions, i.e., string-matching patterns. More specifically, a group pattern is a simple name, a

molecule string, or a list of such strings that is used to identify a single species or set of species. A

group pattern often includes a wildcard.

To consider a simple example of a reaction rule in BioNetGen format, let us return to the

example declarations of binding partners A and B discussed above (i.e., A 2 and B), but let us now

consider molecule A to contain a second component, say a tyrosine residue, which has two states,

unphosphorylated and phosphorylated. The appropriate multi-state species declaration for this

scenario is A 2 2. If the phosphorylation state of component 2 in A does not affect the interaction

of A and B, then we can write a reaction rule for binding of A and B as follows:A(0; �) +B kAB�! A(1; �) (1)
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where A(0; �) and A(1; �) are reactant and product group patterns and � is a wildcard, which in

this case indicates that component 2 of any species of type A can be in any of its possible allowed

states. The reactant group pattern A(0; �) identifies the chemical species that qualify as reactants

(any species of type A with component 1 in state 0), and the product group pattern A(1; �) indicates

how reactants are transformed into products (the state of component 1 in a species of type A is

changed from 0 to 1). The convention is that only transformations explicity indicated in a reaction

rule occur. Thus, the state of component 2 in any species of type A is understood to be unaffected

by reactions in the class of reactions defined by the rule in Equation (1), i.e., only the following

reactions are generated: A(0; 0) +B kAB�! A(1; 0);A(0; 1) +B kAB�! A(1; 1):
In a BioNetGen input file, rules can be specified in uni- or bi-directional forms:rea
tant 1+ : : :! produ
t 1+ : : : forward rate 
onstant

or rea
tant 1+ : : :$ produ
t 1+ : : : forward rate 
onstant; reverse rate 
onstant
where rea
tant 1, produ
t 1, etc. are group patterns (Fig. 2). Specifying a bidirectional reaction

rule is equivalent to specifying two unidirectional reation rules. Any number of group patterns

may be included in a rule. Group patterns can be in three distinct formats:� The group pattern for a single-state species with name mole
ule is just mole
ule.� The group pattern for a multi-state molecule with name mole
ule has the formatmole
ule(state 1; : : : ; state N). Any state i can be replaced with a wildcard, which per-

mits a match to any state of the i-th component of mole
ule.� The group pattern for a complex is a collection of group patterns of the type indicated above,

which are joined using periods, e.g., mole
ule 1(: : :):mole
ule 2(: : :).
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Wildcards can also be used to select complexes of variable molecular composition:� A group pattern ending with � specifies a match to any complex that contains the preceding

molecules. A(�; 1)�, for example, would match both A(0; 1) and A(1; 1):A(1; 0).� A group pattern ending with .� specifies a match to any complex that contains the preceding

molecules and at least one additional molecule. A(�; 1):� would match A(1; 1):A(1; 0) but

not A(0; 1).
We refer to these non-state wildcards as molecular wildcards.

2.3 Rate Laws

Each reaction rule is associated with a rate law, which is taken to apply for all reactions within

the class of reactions defined by the rule. In BioNetGen 1.1, the rate law is assumed to have the

form of a rate law for an elementary reaction with the appropriate number of reactants, and as a

result, only a rate constant is required in an input file to fully specify the rate law associated with

a reaction rule. The rate law for a particular reaction in the reaction class defined by Eq. 1, the

reaction wherein B binds to A(0; 0), would be

rate = kAB[A(0; 0)℄[B℄;
where square brackets are used to indicate concentrations. Higher order reactions may also be

specified with

rate = nYi=1 k[Ri℄;
where [Ri℄ is the concentration of the i-th reactant. More complicated rate laws will be allowed in

future versions of the software.



J. R. FAEDER et al. 13

3 INTERPRETING REACTION RULES

Reaction rules are used, as described below, to identify chemical species that qualify as reactants

and then to define reactions involving these reactants and the products of these reactions. This

section describes in detail how reaction rules are parsed in BioNetGen and used to create new

reactions and species from an existing set of species. The final subsection describes how the full

reaction network is generated through the application of reaction rules to an initial set of chemical

species. In the discussion that follows, we will assume group patterns in reaction rules involve

only molecule strings. A simple name for a single-state species can be viewed as a special type of

molecule string.

3.1 Establishing Correspondence Between Reactants and Products

The first step in processing a reaction rule is to establish correspondence between the molecule

strings of reactants and products (Fig. 3). This correspondence is essential in defining the trans-

formation of reactant species into product species. The default algorithm for assigning correspon-

dence is as follows. Each molecule string in the group patterns on the reactant side is mapped

(going from left to right) to the first molecule string specifying a molecule with the same name

on the product side of the rule that is not already assigned a correspondence. Molecular wildcards

are assigned a correspondence in the same way. A null correspondence is assigned if no match is

found, which allows a molecule to be created or destroyed during a reaction. A null correspon-

dence is not permitted for a molecular wildcard on the product side of a rule. Similarly, a wildcard

for a component state in a product molecule is not permitted if the component state is specified

in the corresponding reactant molecule. In other words, a component state cannot go from being

defined on the reactant side to undefined on the product side.

Although this method of assigning correspondence is adequate for most reaction rules, certain

types of rules require an alternative assignment of correspondence. Consider, for example, trying

to define a reaction which involves the exchange of two molecules in two different complexes. One
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might try to write a rule defining such a transformation to exchange two C molecules as followsA(�):C(0; �) + A(�):C(1; �) �! A(�):C(1; �) +A(�):C(0; �):
However, using default procedures, BioNetGen would assign correspondence in a way that would

not generate the intended exchange. For example, given the reactantsA(0):C(0; 0) andA(1):C(1; 1)
it would generate the reactionA(0):C(0; 0) +A(1):C(1; 1) �! A(0):C(1; 0) +A(1):C(0; 1)
whereas the intended exchange would result inA(0):C(0; 0) +A(1):C(1; 1) �! A(0):C(1; 1) +A(1):C(0; 0):
BioNetGen 1.1 therefore provides a mechanism for assigning unique labels to molecules that allow

a user to override the default assignment of correspondence. Labels are assigned on the reactant

side of a rule by appending ‘%’ to a molecule string followed by an alphanumeric label. These

labels can then be appended to molecule strings on the product side to make explicit correspon-

dences. The default algorithm is used to define corrspondences that are not explicitly declared in

this way. Using this notation, the exchange reaction is represented by the ruleA(�)%A1:C(0; �)%C1+A(�)%A2:C(1; �)%C2�! A(�)%A1:C(1; �)%C2+A(�)%A2:C(0; �)%C1:
In this rule, the labels A1 and A2 are unnecessary, but demonstrate that each molecule in a complex

can be assigned a label. Labels only apply to the rule in which they appear.

3.2 Generating Reactions

After correspondence is established for a reaction rule, the rule is applied to a list of chemical

species. Each reactant group pattern is used to select a list of matching species, all of which are
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possible reactants. A species may appear multiple times in a reactant list if there are multiple

ways in which the molecule strings in the reactant group pattern can match the molecule strings

of a species (examples are given below). Reactions are generated by looping over all possible sets

of reactants drawn from the reactant list(s). Some sets are eliminated by filtering conditions (de-

scribed in the next subsection) that take into account symmetry. For each matching set of reactants

that passes through these filters, product species are generated from the reactant species using the

correspondence between reactant and product molecule strings. For each product molecule string,

the molecule matching the corresponding reactant molecule string is transformed into a product

molecule by changing the component states to match those of the product molecule string. Com-

ponent states that are specified by a wildcard in the product molecule string are unchanged. Once

all product molecules have been generated, product complexes are generated (as needed) by con-

catenating the product strings as specified by product group patterns. Molecules within complexes

are then rearranged into sort order (as described in Sec. 2.1), which guarantees a unique string

representation for each chemical species.

After reactants and products are identified, a reaction string is generated, which consists of a

comma-separated list of reactant species strings followed by a comma-separated list of product

species strings and the corresponding rate constant. The reaction string is added to a temporary list

of reactions generated by the application of this reaction rule to the list of chemical species. Once

all possible reactant sets have been exhausted, this temporary list of reactions is added to a more

global reaction list, as described in Sec. 3.4 below.

The possibility of reaction overlap, which occurs when two reactions with identical reactants

and products are generated by different rules, is checked for and handled according to an optional

user-defined precedence index. By default, all rules generate reactions with precedence index

zero. When two reactions overlap, the reaction with the lower precedence index is deleted, but

both reactions are kept if their precedence indices are equal. Precedence can be used, for examle,

to define sub-classes of reactions with different rate constants or rate laws. This usage is illustrated

in the BioNetGen input file toy coop.in, which is available at our web site [18] and discussed
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later (Sec. 7).

3.3 Reaction Symmetry and Multiplicity

Each reaction generated by a reaction rule is ultimately assigned an effective rate constant that,

by convention, is the product of the rate constant specified in the rule and the multiplicity of the

reaction, which is an integer that depends on reaction symmetry. The multiplicity of a reaction is 1

if there is only one reaction path from reactants to products, whereas the multiplicity is greater than

1 if there are multiple, indistinguishable reaction paths from reactants to products. Reactions for

which the multiplicity is greater than 1 must be considered, for example, in models of multivalent

ligand-receptor binding [24]. In the process of network generation, the multiplicity of a reaction

has an initial value of 1 and is then incremented as indistinguishable instances of the reaction are

generated, as described below. A user must be careful to specify rate constants in reaction rules

that are consistent with the convention described above. Automatic determination of multiplicity

is a critical feature of BioNetGen, because multiplicity can differ for reactions within the same

reaction class.

Let us consider an example of a reaction with a multiplicity of two, which is generated by the

following reaction rule for asymmetric dissociation of a dimer:A(1; �):A(1; �) k�2�! A(1; �) +A(0; �):
When this rule is applied to the complex A(1; 0):A(1; 0), either of two reactions can be generated,

because either of the two molecules in the complex can be transformed into A(0; 0). The reactions

can be written as A(1; 0):A(1; 0) k�2�! A(1; 0) +A(0; 0);A(1; 0):A(1; 0) k�2�! A(0; 0) +A(1; 0):
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Of course, these reactions are chemically indistinguishable, which arises from the fact that the two

molecules in the complex are identical. Thus, instead of two separate reactions, each parameterized

by the rate constant k�2, we can consider a single reaction, which is parameterized by an effective

rate constant that accounts for the two indistinguishable paths to the reaction products:A(1; 0):A(1; 0) ke��! A(1; 0) +A(0; 0):
where ke� = 2k�2. In accordance with the convention, the effective rate constant is the product of

the rate constant in the reaction rule, k�2, and the multiplicity of the reaction, 2.

The procedure for determining the multiplicity of a reaction depends on the following defini-

tion. Two reactant molecule strings in a reaction rule are defined to be equivalent if and only if 1)

they are identical and both appear in the same or identical reactant group patterns, and 2) their cor-

responding product molecule strings are identical and both appear in the same or identical product

group patterns. The use of equivalence is explained below.

During the loop over reactant sets described above in Sec. 3.2, a set is discarded if either of the

following two filtering conditions is applicable:

1. The order in which two equivalent molecule strings match molecules within separate species

does not put the species in sort order (see Sec. 2.1).

2. The order in which two equivalent molecule strings match molecules within a single complex

does not correspond to the order in which the molecules appear in the complex.

Both conditions prevent redundant reactions from being generated by imposing a particular order

in which species and molecules must be matched by equivalent molecule strings.

An example of the application of Filtering Condition 1 is provided by processing the following

reaction rule for a symmetric aggregation reactionA(1; �) +A(1; �) k+2�! A(1; �):A(1; �):
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The two reactant molecule strings are equivalent. Thus, when they match A(1; 1) and A(1; 0),
respectively, BioNetGen generates the reactionA(1; 1) +A(1; 0) k+2�! A(1; 1):A(1; 0):
However, when these molecule strings match A(1; 0) and A(1; 1), respectively, no reaction is gen-

erated because the first filtering condition applies.

An example of the application of Filtering Condition 2 is provided by processing the following

reaction rule for a symmetric dimer breakup reactionA(1; �):A(1; �) k�2�! A(1; �) +A(1; �):
Again, the two reactant molecule strings are equivalent. Thus, when they match A(1; 1) andA(1; 0), respectively, in the complex A(1; 1):A(1; 0), BioNetGen generates the reactionA(1; 1):A(1; 0) k�2�! A(1; 1) +A(1; 0)
However, when the molecule strings match A(1; 0) and A(1; 1), respectively, in the same complex,

the second filtering condition applies and no reaction is generated. For comparison, consider the

following rule for asymmetric dissociation of a dimerA(1; �):A(1; �) k�2�! A(1; �) +A(0; �)
and let us apply this rule to the same dimer A(1; 1):A(1; 0). In this case, the two reactant molecule

strings are not equivalent because their corresponding product molecule strings are different. Thus,

matching A(1; 1) and A(1; 0), respectively, generatesA(1; 1):A(1; 0) k�2�! A(1; 1) +A(0; 0);
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and matching A(1; 0) and A(1; 1), respectively, generatesA(1; 1):A(1; 0) k�2�! A(1; 0) +A(0; 1):
As can be seen, both possible sets of products of A(1; 1):A(1; 0) dissociation are properly gener-

ated.

3.4 Generating the Full Reaction Network

The full biochemical reaction network is generated through application of the reaction rules to an

initial set of chemical species. This initial set may be defined explicitly by the user or generated

automatically from declarations of single- and multi-state species and complexes.

A user-declared set of initial species is typically small, including, for example, only the un-

bound and unmodified forms of the molecules in a system, and is used as the starting point for

iterative application of the reaction rules to generate new species and reactions. Each cycle of

rule application involves applying every reaction rule to the set of species present at the begin-

ning of the cycle (see below for a more detailed description). Rule applications can generate both

new reactions and new species, which are added to the list of species in the network and used

to generate new reactions in the next cycle. Iterative rule application is terminated if any of the

following user-specified conditions is reached: a specified number of product species or reactions

have been generated, a specified number of rule applications has been peformed (corresponding to

a particular value of k in the notation below), or no new reactions are generated. By default, the

last condition is used, which results in the generation of all species and reactions reachable from

the initial set or, if polymer chain elongation reactions are possible [3], an infinite loop. An infinite

loop can be avoided by overriding the default termination condition in the input file or, for exam-

ple, by using declarations of complexes to limit their sizes. Iterative generation from a specified

seed set of species does not require a complete specification of the species that are possible in a

system, and only species accessible from the seed set are generated.
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If the user does not declare a set of initial species, the following species are automatically

generated and used as the initial set in network generation: all declared single-state species, all

declared multi-state species with state indices that fall within the allowed ranges, and all declared

complexes. In this mode of network generation, the initial set of species is considered to be the set

of all possible species. Thus, any rules that generate complexes must be accompanied by an explicit

declaration of the complexes (see Sec. 2.1). This prevents the accidental generation of unintended

species, and provides a useful check that reaction rules are behaving as expected. Because the

generation of additional species is forbidden, reaction rules need only be applied once to the initial

set, which also helps to accelerate network generation.

The process of defining and generating a biochemical reaction network in BioNetGen is sum-

marized by the following steps:

1. Identify the molecules, components of molecules, and possible states of components to be

considered.

2. Specify a reaction rule for each type of reaction to be considered.

3. Provide an initial list of distinct chemical species L0spe
ies (a seed set).

4. For each reaction rule, identify all sets of species in L0spe
ies that qualify as reactants and

define a reaction, as specified in the rule, for each unique set of reactants and products to

obtain a list of distinct reactions L0rea
tions.
5. Identify chemical species that are products in the list L0rea
tions but that are not in the listL0spe
ies to obtain a list of new species L1spe
ies.
6. Starting with k = 1, apply each reaction rule to the set of all species

Ski=0 Lispe
ies to generate

all possible reactions in which at least one reactant is an element of the list Lkspe
ies to obtain,

as described in Steps 4 and 5, a list of new reactions Lkrea
tions and a list of new product

species Lk+1spe
ies. Iterate, incrementing the integer k, until no new species are found or a

specified termination condition is satisfied.
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The specification of a model is completed after the first three steps. Interpretation of this speci-

fication is then performed in the subsequent steps, which end with a list of reactions implied by

the model specification and a list of chemical species that participate in these reactions. Step 4

involves applying the reaction rules to generate all chemical reactions in which the seed set of

chemical species can participate. This is the terminal point in network generation unless the user

has explicitly declared a seed set of species. Iterative generation proceeds with Step 5, the identifi-

cation of new chemical species generated by application of the reaction rules, followed by repeated

cycles of new reaction generation (Step 4) and new species identification (Step 5).

4 FROM NETWORK TO MODEL

Once a reaction network has been generated, the next step is to translate the network into a math-

ematical model. Many different types of models can be obtained from a list of reactions and a list

of the chemical species that participate in these reactions. Note that the different types of models

may require additional information beyond the lists. For example, predictions of an ODE-based

model require specification of the initial concentrations of chemical species and numerical values

of rate constants.

One type of model that can be derived from a list of reactions is a graph. A graph representing

a network can be analyzed to study static properties of the network, such as topological robustness

[25]. It is straightforward to convert a list of reactions into a bipartite graph that represents a bio-

chemical reaction network. In such a graph, one type of node corresponds to chemical species and

the other type of node corresponds to reactions. Directed edges join nodes. An edge indicates that

a chemical species participates in a unidirectional reaction. The direction of the edge distinguishes

between reactant and product. Graphs have been used to represent and study protein interaction

networks and other types of biochemical networks [25].

Another type of static model is a stoichiometric model, the essence of which is the stoichiomet-

ric matrixS [26]. The stoichiometric matrix is constructed from a list of reactions and participating
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chemical species as follows. A row is added for every chemical species, and a column is added

for every unidirectional reaction. Thus, the matrix has m rows and n columns for a network withm species and n unidirectional reactions. Each matrix element sij in row i and column j indicates

the stoichiometry of species i in reaction j. This element is negative if species i is consumed in

reaction j and positive if species i is produced in reaction j. Recently, stoichiometric analysis has

been used in the theoretical study of signal transduction [27, 28].

It is straightforward to go beyond static models and derive a mathematical model for the dynam-

ics of a reaction network. For example, for a network with m chemical species and n unidirectional

reactions, we can write ddtx = S � v
where t is time, x = (x1; x2; : : : ; xm)T is a vector of concentrations of the chemical species,v = (v1; v2; : : : ; vn)T is a vector of fluxes through the reactions, each of which is given by a

rate law in a reaction rule (e.g., kxixj for a biomolecular elementary reaction with rate constantk and reactants i and j having concentrations xi and xj respectively), and S is the stoichiometric

matrix. Once such a model is available, one can estimate parameters in rate laws and then carry

out a computational analysis of the dynamic properties of the model. A BioNetGen input file may

include a list of rate constants and their values and initial non-zero concentrations of specified

chemical species.

5 SIMULTANEOUS NETWORK GENERATION AND SIM-

ULATION

A new feature of BioNetGen 1.1 is the ability to implement a stochastic simulation algorithm (i.e.,

a Monte Carlo method for simulating discrete-event reaction kinetics) [29, 30, 31] at the same

time a reaction network is being generated, as in [32]. As discussed elsewhere [3, 17], this feature

(on-the-fly generation and simulation of a reaction network) may be useful when the number of
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possible chemical species is exceedingly large, because only species that are populated enter into

the calculations. Thus, many species and reactions may never need to be generated when network

generation and simulation are coupled.

The method of on-the-fly network generation and simulation is accomplished by the following

modifications of the six-step procedure described above. In Step 3, the seed set of chemical speciesL0spe
ies must contain at least one species with non-zero population, and every species in the seed

set must be assigned an initial value. Furthermore, the seed set of chemical species must include

all of the chemical species that are populated at time t = 0 of the simulation. Steps 4 and 5 are

then carried out, and any new species generated at the end of these steps are each assigned zero

population number. At this point, k = 1. The process then continues based on a user-specified

upper bound on the index k, which we will denote as k0. Any value can be assigned to k0 so long

as all chemical species in Lk0spe
ies have zero population. After Steps 4 and 5, any k0 � 1 is a valid

assignment. Given some k0, the lists Lispe
ies and Li�1rea
tions are generated for all i � k0 (Step 6) and

then species numbers are updated using the stochastic simulation algorithm (in principle, any other

method of updating species numbers or concentrations may also be used) until a member species

of Lk0spe
ies becomes populated for the first time. When this happens, Step 6 is repeated once or

any specified number of times, and the value of k0 is replaced with the value of k at the end of

this procedure. Updates of species numbers are again performed as before until a member species

of Lk0spe
ies becomes populated for the first time etc. The sets
Sk0i=0Lispe
ies and

Sk0�1i=0 Lirea
tions are

sufficient to implement the method of stochastic simulation (cf. [32]).

It should be noted that the algorithm described above is lacking with respect to computational

efficiency for two reasons. First, the method may generate numerous species and reactions that

are unnecessary, because all species and reactions in Lk0+1spe
ies and Lk0rea
tions are generated, at least,

if just one species in Lk0spe
ies becomes populated. An improvement would be to generate new

species and reactions more selectively [33], but the present method addresses the problem of a non-

terminating polymer chain elongation reaction, which for practical purposes could easily prevent

exhaustive enumeration of the full potentiality of a network, which is limited only by the number



J. R. FAEDER et al. 24

of molecules in a system [3]. It also provides a means to generate only part of a network and

determine if this portion of the network is sufficiently large to contain all populated species. This

capability may be desirable when the potentiality of a network is enormous and most species in it

are never populated. Second, the method of stochastic simulation implemented in the software is

the direct method of Gillespie. More efficient algorithms are available [34, 35, 36, 37, 38, 39].

6 READOUTS

The output of a model simulation includes the concentrations of all species in a chemical reaction

network. However, proper organization of this information may be needed to relate model variables

to experimental readouts. For this reason, we have introduced output function evaluation rules.

Such a rule includes a specified mathematical function of the properties of the chemical species

that belong to a specified group, such as the sum of concentrations of all species in a group. Thus,

the rule consists of a mathematical function, one or more group patterns, and a mapping of the

properties of chemical species into variables of the function. At present, output functions of two

types can be specified in a BioNetGen input file: one is a sum of concentrations and the other is a

weighted sum of concentrations. Each output function evaluation rule has the following format:output type group name group pattern 1 : : : group pattern N

The output type element must be either spe
ies ormole
ules. The group name element is a user-

defined label for referencing the output function. The rest of the function evaluation rule consists

of a list of one or more group patterns that identify a group of chemical species. The output type
element indicates the type of sum to be calculated. A spe
ies sum adds up the concentration

of each species that matches a group pattern in the output rule. A mole
ules sum adds up the

concentration of each species that matches a group pattern in the output rule weighted by the

number of matches found. Note that group patterns ending with a wildcard or containing several

multi-state molecules of the same type can generate multiple matches for the same complex. Note
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also that readouts can be defined to provide sanity checks (i.e., tests for proper model specification).

For example, output functions can be used to confirm that mass is conserved in a model.

7 EXAMPLES

The best-documented example of rule-based modeling is perhaps provided by the Fc�RI model [6,

7]. Another rule-based model that we have developed, and begun to analyze, is an extended form

of the model of Kholodenko et al. [40] for early events in signaling by the epidermal growth factor

(EGF) receptor (EGFR). The extended model incorporates the same scope of protein interactions as

the original model but accounts for a broader range of the chemical species (as discussed elsewhere

[3]) that are implied as being possible by these interactions. BioNetGen input files, consistent

with the standards of version 1.1, are available at our web site [18] for these models. Some of

the properties of these models are summarized in Table 1. Models have been developed using

software tools related to BioNetGen, such as STOCHSIM [14, 15, 16] and Cellerator [41], and a

model recently developed by Chakraborty and co-workers [42] provides another example of rule-

based modeling. In the remainder of this section, we will discuss a rule-based model for the toy

system of Fig. 1. This model is simpler than the models mentioned above, but captures many of

their essential features.

A BioNetGen input file (toy.in [18]) that specifies a model for the toy system of Fig. 1

is illustrated in Figs. 4–6. The lines in the input file delimiting the range of species included in

the model are illustrated in Fig. 4, lines that specify reaction rules are illustrated in Fig. 5, and

lines that define and request different readouts of the model are illustrated in Fig. 6. Because

the representation scheme used by BioNetGen is flexible, models consistent with Fig. 1 could be

specified in other ways. Calculations based on the toy model and the parameter values given in

Table 2 are shown in Fig. 7. Note that in this model, the kinase in the system is taken to be activated

(i.e., its enzymatic activity is upregulated) by phosphorylation.

The model of the toy system illustrated in Figs. 4–6 predicts that very little kinase activation is
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induced by ligand addition (see panels (a) and (b) in Fig. 7). Because the toy system is comprised

of signaling proteins and interactions of the types found in signaling cascades involving Toll-like

receptors (TLRs) [43]3, which play an important role in immunity [44, 45], we decided to explore

how phosphorylation of the kinase in the system might be more strongly induced by ligand. We

found that a model incorporating cooperative interactions between kinases in the same complex

predicts much greater ligand-induced kinase phosphorylation (see panel (c) in Fig. 7). This form

of the model is encoded in the BioNetGen input file toy coop.in and is available at our web

site [18].

Cooperativity is modeled by decreasing the rate constants for adapter-receptor dissociation,

kinase-adapter dissociation, and receptor dimer breakup by 100-fold when two kinase molecules

are present in a complex. This decrease of rate constants for particular reactions is imagined to arise

from interactions between kinase molecules when these molecules are in the same complex. Coop-

erativity is introduced in the BioNetGen input file toy coop.in by introducing reaction classes

in which the rates of dissociation depend on whether or not two kinase molecules are present.

Both toy models involve exactly the same 24 states and 101 reactions, but the rate contants for the

dissociation reactions in which kinase-kinase interactions are present are reduced 100-fold in the

second model. The 13 reaction classes defined in toy.in are expanded to 23 reaction classes in

toy coop.in. The cooperative interactions increase receptor aggregation about 20% at steady

state, while kinase phosphorylation increases about 25-fold, such that about 25% of receptors are

associated with an activated kinase (at steady state), as opposed to less than 1% in the absence of

3The TLRs each contain a conserved cytosolic protein sequence, the Toll/interleukin-1 receptor (TIR) domain,

which plays a central role in signaling. The mechanism of signaling is similar for different TLRs as well as for

other TIR-containing receptors, such as the interleukin-1 (IL-1) receptor (IL-1R). The TIR domain of a receptor in-

teracts with a cytosolic adapter protein, such as MyD88. This adapter protein also interacts with a serine/threonine

kinase, such as IL-1R associated kinase 1 (IRAK-1). Adapter-mediated coupling of IRAK-1 to a TIR-containing re-

ceptor mediates, through mechanisms yet to be fully characterized, hyperphosphorylation of IRAK-1, which is critical

for downstream events. This simplified description of early events in signal transduction is elaborated in Fig. 1 if

we associate the kinase, adapter, and receptor in this figure with IRAK-1, MyD88, and a TIR-containing receptor

that dimerizes through receptor-receptor interaction in response to monovalent ligand-receptor binding. Thus, in the

scheme of Fig. 1, which is highly speculative, the mechanism of IRAK-1 phosphorylation is ligand-induced dimeriza-

ton of receptors that are each associated with MyD88 and IRAK-1. Co-localization of two molecules of IRAK-1 in

this manner allows one to transphosphorylate the other. We caution that signaling is actually far more complicated.

Activation of IRAK-1 is influenced by additional adapter proteins, such as Mal/TIRAP, and other members of the

IRAK family, such as IRAK-4. For a recent review of signaling by a TLR, see [43].
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cooperative interactions. The kinetics of kinase phosphorylation predicted by the two models are

compared in panels (b) and (c) of Fig. 7. Thus, as was also found in an analysis of the Fc�RI model

[7], a mechanism for selectively recruiting kinase molecules to receptor aggregates is necessary to

generate substantial kinase activation. In the absence of such a mechanism, a substantial fraction

of receptors (14% in the case of toy.in) may bind kinase, but only a minuscule fraction of these

kinases are activated at steady state. Interestingly, ligand-induced recruitment of the adapter, which

is consistent with observed recruitment of MyD88 during signaling by TIR-containing receptors

[46], is predicted by the second model but not the first. This finding supports the idea that coopera-

tive binding of signaling molecules may be a feature of early events in signaling by TIR-containing

receptors. Analysis of the two toy models demonstrates that numerical values of rate constants can

have a dramatic effect on the behavior of a signaling network, because the two reaction networks

are otherwise identical. Thus, any method of analysis that does not consider quantitative aspects of

molecular interactions may miss biophysical mechanisms that play a key role in signal processing.

8 MASS DEPENDENCE OF RATE LAWS

One question that arises about the approach taken in BioNetGen is whether it is correct to assume

that the same rate constant applies to all reactions in a given class. It is possible, for example,

that cooperative interactions among the molecules in a complex will affect binding rates. Unfortu-

nately, it is often the case that no data is available about cooperativity. In the absence of data, the

simplest assumption is that of zero cooperativity, i.e., no interaction between proteins that bind si-

multaneously to another protein. This assumption is the starting point for a search for cooperativity

in that it serves as a null hypothesis.

The form of cooperativity perhaps of primary concern (and the form that would probably be

easiest to predict or detect) is negative cooperativity arising from steric clashes. Although steric

effects could prevent large proteins from binding to nearby binding sites on the same protein, mul-

tiple signaling proteins have been observed to bind non-competitively to a single scaffold-like pro-
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tein [47]. Also, relatively large domains of a protein have been observed to interact simultaneously

with much smaller closely-spaced binding sites. For example, the two tandem SH2 domains of the

PTK Syk can simultaneously bind separate phosphotyrosines within a immunoreceptor tyrosine-

based activation motif (ITAM) [48, 49]. Thus, steric constraints on complex formation may not be

as severe as one might first think.

Computational studies of protein structure may have the potential to generate data that could

be useful when developing reaction rules in the absence of other data. For example, homology

modeling and molecular docking could be used to predict steric clashes [50, 51] and structural

information could be used to predict the parameters of a reaction as a function of molecular context

[52, 53].

Another factor that might cause variability in the rate of bimolecular reactions within a re-

action class is the slower diffusion rate of larger complexes in comparison with either smaller

complexes or individual molecules. Of course, differences in the rate of diffusion will only mat-

ter when reactions are affected by diffusion, which is not the case for binding in the reaction-

limited regime (where the rate of molecular collision is much faster than the rate of chemical

transformation). We expect reaction-limited binding for reactions between molecules in the cy-

tosol or between an extacellular or cytosolic molecule and a membrane-anchored molecule when

the concentration of membrane-anchored molecules is not too high [54]. The binding kinetics of

an extracellular or cytosolic ligand associating or dissociating with a membrane protein will be

influenced by diffusion of the ligand when the membrane protein concentrations are sufficiently

high [55, 56, 57]. Likewise, enzyme-catalyzed reactions are often reaction-limited, although some

enzymes catalyze reactions near the maximum, diffusion-limited rate [58]. For reactions between

membrane-anchored molecules, there are some cases where diffusion effects can influence re-

actions, but passive changes in the diffusion coefficient of a transmembrane protein due to the

addition of extracellular or cytosolic proteins are expected to be negligible, as explained below.

The viscosity of a cell membrane is at least an order of magnitude higher than the viscosity of

the cytosol or extracellular medium ( cf. [59, 60]), and thus, the attachment of molecules to the
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extracellular or cytosolic region of a membrane protein are predicted to have a negligible effect on

the rate of diffusion. Experimental measurements support this prediction [61, 62]. Changing the

effective size of the transmembrane region, for example when a membrane protein associates with

another membrane protein to form a dimer, is also likely to cause only a minor change in the diffu-

sion coefficient because the diffusion coefficient has only a logarithmic dependence on membrane

surface area [63]. This prediction is supported by experimental data indicating that monomers and

dimers of Fc�RI have similar diffusion coefficients [64]. Interestingly, the diffusion coefficient

decreases significantly for trimers of Fc�RI, which has been attributed to strong interactions of

receptor trimers with the cytoskeleton as a result of receptor signaling [65]. Such an effect should

certainly be included in any realistic model of a system, but this effect is not passive and cannot be

predicted from diffusion theory.

Let us now consider the case of a diffusion-limited reaction in the solution phase. The Smolu-

chowski diffusion-limited forward rate constant, k+, for the binding of two globular proteins in

solution [66, 67] is given by k+ = 4�(D1 +D2)(a1 + a2); (2)

where D1 and D2 are the diffusion coefficients of the two proteins and a1 and a2 are the contact

radii of the proteins. Using the Stokes-Einstein equation, D = kBT=(6��a), which relates the

diffusion coefficient D of a protein to the Boltzmann constant kB, the absolute temperature T , the

medium viscosity �, and the protein radius a, and the geometric result that for a globular (i.e.,

spherical) protein a / m1=3, where m is the mass of the protein, we findk+ = 2kBT3�  2 + �m1m2�1=3 + �m2m1�1=3! : (3)

This equation gives the correction needed for diffusion-limited binding reactions between molecules

that may be associated with other factors. Consider, for example, binding of two proteins of equal

molecular weight. When one of these two proteins is bound to a third protein that is ten times its

mass, then k+ for the binding reaction is reduced. However, the reduction is only 17% relative to



J. R. FAEDER et al. 30

the case in which the third protein is absent. Such corrections are minor in general because k+
varies sublinearly with the mass of a protein, as indicated in Eq. 3.

Based on the above considerations, we conclude that no theoretical correction for the effect of

complexation on diffusion is necessary for reactions that involve only membrane proteins. Such

corrections could well be important, as we have noted, but these corrections cannot be obtained

from diffusion theory alone. For reactions that involve proteins diffusing in three dimensions,

corrections will be relatively small because they depend sublinearly on mass differences, i.e., the

correction is proportional to the cube root of the mass difference. Moreover, these corrections are

needed only when the rates of reactions are affected by diffusion, which is atypical. Therefore,

in BioNetGen 1.1 rate constants are not adjusted for mass differences among reactants within a

reaction class. This feature could be added if required.

9 GRAPH EXTENSION OF STRING-BASED REPRESEN-

TATION

As mentioned earlier, a limitation of BioNetGen is the inability to explicitly and systematically

specify the connectivity of molecular components in a complex. The representational scheme of

Faeder et al. [19] was proposed to remove this limitation. In this scheme, molecules are repre-

sented as graph partitions, which are drawn as boxes containing components, as in Fig. 1. Graphs

comprise nodes, node labels, and edges. The nodes represent components of molecules, the text

labels of these nodes give the names of components and the states of components (if any are speci-

fied), and edges represent bonds between components. A list of possible allowed states is provided

when a component is introduced. A complex is represented as a graph, as in the case of a molecule,

but the graph has more than one partition, one for each molecule in the complex. Complexes could

also be represented as in BioNetGen through the state description of components, although this

usage is deprecated. Regular expressions in reaction rules are replaced with graphs, which are

subgraphs of graphs that represent chemical species. A missing label for the state of a component
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is equivalent to the wildcard � in BioNetGen.

According to the graphical conventions of model specification [19], reaction rules take the form

of graph rewriting rules, cut-and-paste operations on graphs that transform a set of left (reactant)

graphs into a set of right (product) graphs. (Cut-and-paste operations can be equivalent to relabel-

ing operations.) To establish correspondence between reactant and product graphs, one will need

to specify a mapping of reactant graph nodes to product graph nodes and indicate which reactant

graph elements are and are not affected by graph rewriting. Parts of a reactant graph that are not

affected by rewriting are purely contextual, e.g., an enzyme may need to be present to catalyze a

reaction but the enzyme would be unaffected by the reaction.

The details of a procedure for applying graphical reaction rules have yet to be worked out; how-

ever, two classical problems must be solved in this procedure. One must be able to determine if

two graphs are identical, and one must be able to determine if a graph representing a group pattern

is an isomorphic subgraph of a second graph representing a chemical species. The first problem

(graph isomorphism) must be solved to build and maintain the lists of chemical species and reac-

tions. The second problem (subgraph isomorphism) must be solved to find chemical species that

qualify as reactants as defined in a reaction rule. A canonical labeling of graphs [68], analogous

to the sort function employed here for species labeling, may be useful for solving the problems

of graph isomorphism. The method of Ullmann [69] may be useful for solving the problems of

subgraph isomorphism, especially because we are only interested in mappings between nodes with

identical name labels and so we can reject many mappings otherwise possible. The method of Ull-

mann allows information about name labels to be used before beginning the search for mappings

of a subgraph into a graph.

DISCUSSION

In this paper, we have discussed the rationale behind our rule-based approach to modeling a bio-

chemical network that is marked by combinatorial complexity, and we have outlined the steps
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involved in specifying a model and interpreting the specification of a model. The method pre-

sented here, which we have illustrated using simple examples, is akin to cellular automata and

agent-based modeling approaches, such as that of STOCHSIM [15], in that rules, which describe

local interactions of the components in a system (e.g., modular protein-protein interactions of a

signal-transduction network), determine the emergent behavior of the system. These rules are used

to generate a list of reactions and participating chemical species. Thus, the rules and the process

of rule generation lead to a physicochemical model, which can provide the basis for simulation

studies and analysis of system behavior.

This report also serves to announce new features of the most recent release of the BioNetGen

software package, a general-purpose tool for rule-based modeling. The current version of BioNet-

Gen (1.1) differs from the original version (1.0) [17] in that now chemical species need not be

enumerated before the application of reaction rules, network simulation can proceed without ex-

haustive generation of the network, and complexes consisting of more than two molecules having

multi-state descriptions may be included in a model, although representation of complexes can still

be problematic.

Because current conventions of model specification do not allow the connectivity of molecules

in a complex to be represented explicity or systematically, we have proposed new graph-based

conventions for model specification [19], which have been discussed and illustrated here. We have

pointed out the new problems of reaction rule processing that arise with these conventions. The

capability of the graph-based scheme to represent connectivity comes at the expense of needing to

solve problems of graph and subgraph isomorphism in the application of reaction rules rather than

the simpler problems of string matching encountered in the current implementation of BioNetGen.

In the graphical method of representation, the reaction rules take the form of graph rewriting rules,

with subgraphs replacing the regular expressions of BioNetGen. This new approach to model

specification is inspired by the use of graphs and graph rewriting rules to model chemical systems

(for examples, see [20, 21, 70, 71, 72, 73]). The literature about the use of rules, including graph

rewriting rules, to model systems is vast. However, the rule-based approach described here is
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one of the first attempts to use rules to generate physicochemical models of systems of molecular

biology, such as protein interaction networks.

The conventions of BioNetGen provide a language for describing biological systems that is

concise (a BioNetGen input file and the actual list of reactions specified in the file are compared

in [17]) and precise. A BioNetGen input file is precise in that the underlying reaction network of

a signal-transduction system is unambiguously defined; it is also comprehensive in that the reac-

tions considered in the model are all those implied by the specified types of protein interactions

(i.e., by the set of specified reaction rules). Many other researchers are also concerned with how

to represent biological systems, particularly signal-transduction systems [23]. A related concern

is standardization of representational schemes for electronic exchange and archive purposes [74].

Kohn and co-workers [22, 75], for example, have developed a formalization of diagrammatic inter-

action maps, which are commonly used ad hoc to describe the interactions of a system of proteins

or the effects of protein interactions. Others have introduced tools of computer science, such as

process algebra for representing concurrent processes, in an attempt to develop a formal language

of molecular biology [76, 77, 78]. Notably, graphs have been used to represent biological systems

in the frameworks of rewriting logic [79, 80] and process algebra [81, 82]. Finally, in addition to

BioNetGen, several software tools for computer-aided specification and generation of mathemat-

ical/computational models have been developed [14, 15, 16, 33, 41, 83, 84, 85, 86]. Such tools

allow one to formulate and analyze models that are much larger than those that can be reason-

ably specified using only paper and pencil. BioNetGen, for example, has been used to formulate

dynamical models of signal-transduction networks, like the Fc�RI model [6, 7], that account for

protein phosphorylation states and protein complexes found in hundreds to thousands of chemical

species [18]. We believe that this type of modeling capability, which is needed to overcome the

problem of combinatorial complexity, must be further developed and will play an important role

in understanding the behavior of a cell. Standards for representing and exchanging models that

include multi-state molecules and multi-component complexes are currently being developed [87].
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FOOTNOTES1The physiological function of a signal-transduction network is to convert an environmental signal,

such as the presence of an extracellular ligand of a cell-surface receptor, into cellular responses,

such as changes in gene expression, which allow a cell to adapt to the demands of its environment.2Component states can be introduced to represent different conformations or modified forms of

a molecular component. For example, the enzymatic activity of a kinase domain might be up-

regulated by phosphorylation of its activation loop, which causes a conformational change. To

distinguish the inactive and active forms of such a kinase, we need to track its conformational

state, or equivalently the phosphorylation state of its activation loop. An alternative to introducing

a phosphorylation state would be to represent a phosphate group as a distinct component. If this

approach is followed, it is important to distinguish between covalent and non-covalent bonds when

specifying a model.3The TLRs each contain a conserved cytosolic protein sequence, the Toll/interleukin-1 receptor

(TIR) domain, which plays a central role in signaling. The mechanism of signaling is similar for

different TLRs as well as for other TIR-containing receptors, such as the interleukin-1 (IL-1) re-

ceptor (IL-1R). The TIR domain of a receptor interacts with a cytosolic adapter protein, such as

MyD88. This adapter protein also interacts with a serine/threonine kinase, such as IL-1R asso-

ciated kinase 1 (IRAK-1). Adapter-mediated coupling of IRAK-1 to a TIR-containing receptor

mediates, through mechanisms yet to be fully characterized, hyperphosphorylation of IRAK-1,

which is critical for downstream events. This simplified description of early events in signal trans-

duction is elaborated in Fig. 1 if we associate the kinase, adapter, and receptor in this figure with

IRAK-1, MyD88, and a TIR-containing receptor that dimerizes through receptor-receptor interac-

tion in response to monovalent ligand-receptor binding. Thus, in the scheme of Fig. 1, which is

highly speculative, the mechanism of IRAK-1 phosphorylation is ligand-induced dimerizaton of

receptors that are each associated with MyD88 and IRAK-1. Co-localization of two molecules of



J. R. FAEDER et al. 45

IRAK-1 in this manner allows one to transphosphorylate the other. We caution that signaling is

actually far more complicated. Activation of IRAK-1 is influenced by additional adapter proteins,

such as Mal/TIRAP, and other members of the IRAK family, such as IRAK-4. For a recent review

of signaling by a TLR, see [43].
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TABLE 1

Summary of Network Properties

Model File Name Molecules Species Uni Reactions

Fc�RI Model [6, 7] fceri net.in 4 354 3680

Original EGFR Model w/o PLC
 [40] egfr path.in 5 18 37

Extended EGFR Model [3, 40] egfr net.in 5 356 3749

Toy Model (this paper, Fig. 1) toy.in 4 24 101

These networks, and others, are available as BioNetGen input files at our web site [18]. The seminal

model of Kholodenko et al. [40] describes EGF-stimulated activation of the guanine-nucleotide

exchange factor Sos. The versions of this model cited in the table omit phospholipase C
 (PLC
),

which was included in the original model but is not involved in Sos activation. The extended form of

the model encompasses the chemical species identified in ref. [3] except that only dimers of EGFR

in which each receptor is bound to a ligand are considered, as in the original model [40]. When

all possible ligand-bound forms of a dimer are considered, there are 1232, instead of 356, chemical

species that are possible [3].
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TABLE 2

Parameter Values in Toy Model

Symbol Value Parameterk+L, k�L 0.1 Forward and reverse rate constants for ligand-receptor bindingk+D 1 Rate constant for ligand-induced receptor dimerizationk�D 0.1 Rate constant for receptor dimer dissociationk+A, k�A 0.1 Forward and reverse rate constants for receptor-adapter bindingk+K , k�K 0.1 Forward and reverse rate constants for adapter-kinase bindingk+SK , k�SK 0.1 Forward and reverse rate constants for adapter-kinase complex

binding to receptorpK 1 Rate of transphosphorylation catalyzed by unphosphorylated kinasepKs 10 Rate of transphosphorylation catalyzed by phosphorylated kinasedM 1 Rate of dephosphorylation at the membranedC 10 Rate of dephosphorylation in the cytosolLT , RT , AT , KT 1 Total concentrations of ligand, receptor, adapter, and kinaseL at t = 0 LT Initial concentration of free ligand

Parameter values are given in consistent units. The initial concentrations of membrane-associated

and cytosolic species are the equilibrium values in the absence of ligand. dLT=dt = dRT=dt =dAT=dt = dKT=dt = 0 for all t, except a bolus of ligand is introduced at t = 0.
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FIGURE CAPTIONS

FIGURE 1. A system represented using the graphical conventions for model specification [19].

This system consists of a monovalent extracellular ligand, a monovalent cell-surface receptor, a bi-

valent cytosolic adapter protein, and a cytosolic kinase. The receptor dimerizes through a receptor-

receptor interaction that depends on ligand binding. The adapter binds the receptor and the kinase.

When two kinases are juxtaposed through binding to receptor-associated adapter proteins, one of

the kinases can transphosphorylate the second kinase. In this representational scheme, nodes of

a graph represent components of a molecule. Each node is named. The label of a node gives the

name and the state of the corresponding component (if the component is allowed to have multiple

states). Edges that join nodes represent bonds between components; only bonds that can form

or break during signaling are represented explicitly. Graphs are partitioned; each partition corre-

sponds to a molecule. Partitions are indicated by boxes surrounding a collection of nodes. An

empty node indicates a component that is unbound. A half-filled node represents a component that

may be bound or unbound. A filled-node represents a component that is bound. The graphs in

reaction rules are subgraphs.

FIGURE 2. Definitions of key terms used to describe the procedures of rule-based modeling.

FIGURE 3. Simple examples of reaction rule processing. These examples illustrate establishment

of correspondence between reactants and products. In the first example, at top, two molecules

in a complex are mapped to the products that result from dissociation of the complex. Note that

the state of component 1 of one molecule of A in the complex A(1; �):A(1; �) changes from 1

to 0 upon dissociation of the complex. This transition corresponds to dissociation of a receptor

dimer, which is formed through interaction of two receptors with a bivalent ligand. Dimer dissoci-

ation occurs when one of the two ligand-receptor bonds breaks. In the second example, at bottom,

a particular multi-state molecule A(�; 0), which may (or may not) be associated with additional

molecules in a complex (as indicated by the wildcard � appended to A(�; 0)), associates with a
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single-state molecule B to form a complex. The multi-state molecule A(�; 0) on the reactant side

of the reaction is mapped to the same molecule on the product side of the reaction. Any additional

molecules associated with A(�; 0) on the reactant side of the reaction are also mapped to the same

molecules on the product side of the reaction, i.e., the wildcard � on the reactant side of the reaction

maps to the wildcard � on the product side of the reaction. The single-state molecule B is assigned

a null correspondence, because it is anniliated in the reaction, i.e., the free form of this molecule,B, is lost. The bound form of B is represented as state 1 of component 2 of multi-state moleculeA. Note that the free form of component 2 of A is represented as state 0 of this component, and

binding of B to A(�; 0)� is represented as a change of state of component 2 of A from 0 to 1.

FIGURE 4. Declarations of single-state species, multi-state species, and groups of multi-state

species and complexes. The text declarations found in the BioNetGen input file toy.in [18] are

illustrated using the graphical conventions of [19] and the icons introduced in Fig. 1. These dec-

larations introduce six single-state species (the ones shown explicitly in panel (a)) and multi-state

species that contain a receptor comprised of three components (panels (b) and (c)). As indicated

in panel (b), the first and second components of a receptor each have two possible states, and the

third component has four possible states. However, not all combinations of these states are allowed

(panel (c)). The two declarations of panel (c) limit the number of multi-state species. The first dec-

laration permits eight multi-state species in the group R(�; 0; �), all of which contain one receptor.

The second declaration permits four symmetric species and six (4 choose 2) asymmetric species in

the group R(1; 1; �):R(1; 1; �), all of which contain two receptors in a complex.

FIGURE 5. A set of reaction rules. These 13 rules, which are illustrated using the graphical con-

ventions of Fig. 1, are declared in the BioNetGen input file toy.in [18]. Rules (3)–(5) illustrate

how the text-based conventions for model specification can be more verbose than the graph-based

conventions. These rules together are equivalent to the single graphical reaction rule that is shown

above them, and we can consider them to define only a single class of reaction in which all re-
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versible reactions are parameterized by the same forward and reverse rate constants. Likewise, we

can consider Rules (6) and (7) to define a single reaction class, and we can consider Rules (8) and

(9) to define a related but distinct reaction class. More than one reaction rule must be specified

to define each of these classes because of the way that cytosolic species are treated in the model

specification: each cytosolic species is represented using a single-state declaration. In contrast,

Rules (10) and (11) and Rules (12) and (13) show that distinct reaction classes can be declared

for the same type of chemical transformation to account for an effect of molecular context on the

rate of chemical transformation. Rules (10) and (11) indicate that the rate of transphosphorylation

catalyzed by a kinase in a receptor complex is affected by the phosphorylation state of the kinase.

It is upregulated if pKs > pK . Rules (12) and (13) indicate that dephosphorylation of a kinase

is affected by its location in the cell: the rate constant dM applies when the kinase is localized at

the membrane in a receptor complex, whereas the rate constant dC applies when the kinase is in

the cytsol. This distinction is relevant if the phosphatases that mediate dephosphorylation, which

are considered only implicity in this model specification, are localized (e.g., anchored to the inner

membrane or free to diffuse in the cytosol).

FIGURE 6. Examples of function evaluation rules. These rules are declared in the BioNetGen

input file toy.in [18]. Each rule specifies a readout that is a sum of variables (concentrations) in

the model. The RecDim readout corresponds to the number of receptor dimers. The Rec-A read-

out corresponds to the number of adapters bound to a receptor. The Rec-K readout corresponds

to the number of kinases in a complex with a receptor. The Rec-Kp readout corresponds to the

number of phosphorylated kinases in a complex with a receptor.

FIGURE 7. Readouts defined in Fig. 6 as a function of time. Calculations for panels (a) and (b)

were performed using the BioNetGen software package and are based on the parameter values of

Table 2 and the model specification (toy.in [18]) illustrated in Figs. 4 and 5. Calculations for

panel (c) were also performed using BioNetGen and are based on the alternative model with coop-
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erativity added as discussed in the text (toy coop.in [18]). Panel (a) shows all four readouts of

Fig. 6 on the same scale. Panel (b) shows only the Rec-Kp readout; the scale has been magnified.

Panel (c) shows how the readouts of panel (a) change when the model is modified.
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RECEPTOR

LIGAND

ADAPTER

KINASE

site of receptor bindingsite of ligand binding
site of receptor-receptor interaction
site of adapter binding

site of receptor binding
site of kinase binding

site of adapter binding
site of phosphorylation
two states are possible: unphosphorylated (U) or phosphorylated (P)

U P

P U

a) Molecules, molecular components, and component states

b) Reaction rules
Ligand-receptor binding

Ligand-induced receptor-mediated 
receptor dimerization

Receptor-adapter binding

Adapter-kinase binding

Transphosphorylation of a kinase by a  second neighboring kinase

Dephosphorylation

Figure 1: A system represented using the graphical conventions for model specification [19]. This

system consists of a monovalent extracellular ligand, a monovalent cell-surface receptor, a biva-

lent cytosolic adapter protein, and a cytosolic kinase. The receptor dimerizes through a receptor-

receptor interaction that depends on ligand binding. The adapter binds the receptor and the kinase.

When two kinases are juxtaposed through binding to receptor-associated adapter proteins, one of

the kinases can transphosphorylate the second kinase. In this representational scheme, nodes of

a graph represent components of a molecule. Each node is named. The label of a node gives the

name and the state of the corresponding component (if the component is allowed to have multiple

states). Edges that join nodes represent bonds between components; only bonds that can form

or break during signaling are represented explicitly. Graphs are partitioned; each partition corre-

sponds to a molecule. Partitions are indicated by boxes surrounding a collection of nodes. An

empty node indicates a component that is unbound. A half-filled node represents a component that

may be bound or unbound. A filled-node represents a component that is bound. The graphs in

reaction rules are subgraphs.
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Component A part of a biomolecule, such as a site

of post-translational modification, a motif, or a

conserved recognition or catalytic domain in a

protein.

State An attribute of a component, such as its state

of non-covalent ligation, conformation, or co-

valent modification.

Bond A connection between components.

Molecule A set of components that form a unit,

such as the components of a single polypeptide

chain or a multimeric protein.

Molecule String Text consisting of a name for a

molecule and an ordered list of indices that

indicate the states of components of the

molecule.

Chemical Species A molecule with each of its com-

ponents in a particular state or a complex of

molecules, each with components in particular

states and connected through a particular con-

figuration of bonds.

Group Pattern A pattern that identifies shared com-

ponent states and bonds of a set of chemical

species.

Reaction Rule A definition of a class of reaction,

which may be associated with a particular type

of interaction between components. A rule

consists of a rate law and group patterns that

can be used to identify sets of reactants and sets

of products that result from reactions.

Function Evaluation Rule A mapping of the proper-

ties of a given set of chemical species, iden-

tified by one or more group patterns, into the

variables of a given mathematical function,

such as the sum of the concentrations of all

species containing a particular molecule.

Figure 2: Definitions of key terms used to describe the procedures of rule-based modeling.
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A(1,*)  +  A(0,*)A(1,*).A(1,*)

A(0,1)*A(*,0)*  +  B
NULL

Figure 3: Simple examples of reaction rule processing. These examples illustrate establishment

of correspondence between reactants and products. In the first example, at top, two molecules in

a complex are mapped to the products that result from dissociation of the complex. Note that the

state of component 1 of one molecule of A in the complex A(1; �):A(1; �) changes from 1 to 0

upon dissociation of the complex. This transition corresponds to dissociation of a receptor dimer,

which is formed through interaction of two receptors with a bivalent ligand. Dimer dissociation

occurs when one of the two ligand-receptor bonds breaks. In the second example, at bottom,

a particular multi-state molecule A(�; 0), which may (or may not) be associated with additional

molecules in a complex (as indicated by the wildcard � appended to A(�; 0)), associates with a

single-state molecule B to form a complex. The multi-state molecule A(�; 0) on the reactant side

of the reaction is mapped to the same molecule on the product side of the reaction. Any additional

molecules associated with A(�; 0) on the reactant side of the reaction are also mapped to the same

molecules on the product side of the reaction, i.e., the wildcard � on the reactant side of the reaction

maps to the wildcard � on the product side of the reaction. The single-state molecule B is assigned

a null correspondence, because it is anniliated in the reaction, i.e., the free form of this molecule,B, is lost. The bound form of B is represented as state 1 of component 2 of multi-state moleculeA. Note that the free form of component 2 of A is represented as state 0 of this component, and

binding of B to A(�; 0)� is represented as a change of state of component 2 of A from 0 to 1.
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L

a) Single-state species 

A K
U

Kp
P U P

AK AKp
b) Multi-state species 
R 2 2 4

0 free
1 bound to ligand
0 free
1 bound to a second receptor
0 free
1 bound to adapter
2 bound to adapter + unphos. kinase
3 bound to adapter + phosphorylated kinase

c) Groups of multi-state species and complexes 

R(*,0,*) R(1,1,*).R(1,1,*)
Figure 4: Declarations of single-state species, multi-state species, and groups of multi-state species

and complexes. The text declarations found in the BioNetGen input file toy.in [18] are illus-

trated using the graphical conventions of [19] and the icons introduced in Fig. 1. These decla-

rations introduce six single-state species (the ones shown explicitly in panel (a)) and multi-state

species that contain a receptor comprised of three components (panels (b) and (c)). As indicated

in panel (b), the first and second components of a receptor each have two possible states, and the

third component has four possible states. However, not all combinations of these states are allowed

(panel (c)). The two declarations of panel (c) limit the number of multi-state species. The first dec-

laration permits eight multi-state species in the group R(�; 0; �), all of which contain one receptor.

The second declaration permits four symmetric species and six (4 choose 2) asymmetric species in

the group R(1; 1; �):R(1; 1; �), all of which contain two receptors in a complex.
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1) R(0,0,*) + L <-> R(1,0,*) kpL, kmL

2) R(1,0,*) + R(1,0,*) <-> R(1,1,*).R(1,1,*) kpD, kmD

3) R(*,*,0)* + A <-> R(*,*,1)* kpA, kmA
4) R(*,*,0)* + AK <-> R(*,*,2)* kpA, kmA
5) R(*,*,0)* + AKp <-> R(*,*,3)* kpA, kmA

6) R(*,*,1)* + K <-> R(*,*,2)* kpK, kmK
7) R(*,*,1)* + Kp <-> R(*,*,3)* kpK, kmK

10) R(1,1,2).R(1,1,2) -> R(1,1,2).R(1,1,3) pK
11) R(1,1,3).R(1,1,2) -> R(1,1,3).R(1,1,3) pKs

12) R(*,*,3)* -> R(*,*,2)* dM
13) Kp -> K dC

8) A + K <-> AK kpAK, kmAK
9) A + Kp <-> AKp kpAK, kmAK

U P

P U

Figure 5: A set of reaction rules. These 13 rules, which are illustrated using the graphical con-

ventions of Fig. 1, are declared in the BioNetGen input file toy.in [18]. Rules (3)–(5) illustrate

how the text-based conventions for model specification can be more verbose than the graph-based

conventions. These rules together are equivalent to the single graphical reaction rule that is shown

above them, and we can consider them to define only a single class of reaction in which all re-

versible reactions are parameterized by the same forward and reverse rate constants. Likewise, we

can consider Rules (6) and (7) to define a single reaction class, and we can consider Rules (8) and

(9) to define a related but distinct reaction class. More than one reaction rule must be specified

to define each of these classes because of the way that cytosolic species are treated in the model

specification: each cytosolic species is represented using a single-state declaration. In contrast,

Rules (10) and (11) and Rules (12) and (13) show that distinct reaction classes can be declared

for the same type of chemical transformation to account for an effect of molecular context on the

rate of chemical transformation. Rules (10) and (11) indicate that the rate of transphosphorylation

catalyzed by a kinase in a receptor complex is affected by the phosphorylation state of the kinase.

It is upregulated if pKs > pK . Rules (12) and (13) indicate that dephosphorylation of a kinase

is affected by its location in the cell: the rate constant dM applies when the kinase is localized at

the membrane in a receptor complex, whereas the rate constant dC applies when the kinase is in

the cytsol. This distinction is relevant if the phosphatases that mediate dephosphorylation, which

are considered only implicity in this model specification, are localized (e.g., anchored to the inner

membrane or free to diffuse in the cytosol).



J. R. FAEDER et al. 57

Molecules RecDim R(*,1,*).*
Molecules Rec-A R(*,*,1)* R(*,*,2)* R(*,*,3)*
Molecules Rec-K R(*,*,2)* R(*,*,3)*
Molecules Rec-Kp R(*,*,3)*

Figure 6: Examples of function evaluation rules. These rules are declared in the BioNetGen input

file toy.in [18]. Each rule specifies a readout that is a sum of variables (concentrations) in the

model. The RecDim readout corresponds to the number of receptor dimers. The Rec-A readout

corresponds to the number of adapters bound to a receptor. The Rec-K readout corresponds to the

number of kinases in a complex with a receptor. The Rec-Kp readout corresponds to the number

of phosphorylated kinases in a complex with a receptor.
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Figure 7: Readouts defined in Fig. 6 as a function of time. Calculations for panels (a) and (b) were

performed using the BioNetGen software package and are based on the parameter values of Table 2

and the model specification (toy.in [18]) illustrated in Figs. 4 and 5. Calculations for panel (c)

were also performed using BioNetGen and are based on the alternative model with cooperativity

added as discussed in the text (toy coop.in [18]). Panel (a) shows all four readouts of Fig. 6 on

the same scale. Panel (b) shows only the Rec-Kp readout; the scale has been magnified. Panel (c)

shows how the readouts of panel (a) change when the model is modified.


